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The problem of the optimal stabilization [1, 2] of non-linear controlled systems in the critical case of a single zero root [3-5] is 
considered when the righl:-hand sides of the equations of the perturbed motion and the integrand in the quality criterion are 
analytic with respect to the: phase coordinates and the control forces. It is assumed that the right-hand side of the critical equation 
is multiplied by a critical variable and its expansion begins with the terms of the second order. Sufficient conditions for the solvability 
of the problem are established when the expansion of the integrand in the quality criterion in powers of the phase coordinates 
and the control forces begin with a positive definite quadratic form, and it is shown that the optimal control is a non-smooth 
function of the critical variable and has the form of the permissible control proposed in [5] when constructing stabilizing forces 
in the critical case of a single zero root. An iterative procedure for calculating the optimal control and the optimal Lyapunov 
function, which is based on results obtained previously [1, 2, 6, 7] and converges for sufficiently small initial perturbations with 
respect to the non-critical variables, is substantiated. An asymptotic expansion of the optimal result in powers of the critical variable 
is constructed using perturbation methods [8] and estimates of the accuracy of the approximations are indicated. © 1998 Elsevier 
Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose that the transient dynamics of a controlled system is described by the equations of the perturbed 
motion 

~ = ff.z2 + ~zu + z'q'y = Z~2) (z, y, u), ~l = Ay + bu + pz (1.1) 

where z ~ R, y e R n are phase coordinates, u ~ R is the control force, A ~ R nn is a constant matrix, p, 
q e R are constant vectors and a prime denotes transposition. 

The transient quality is described by the functional 

J[ul = ~ (y'Ry + z 2 +u2)dt  (1.2) 
o 

In order to simpli~ the calculations and to shorten the length of this paper, it is assumed in (1.1) 
and (1.2) that the control force u is a scalar quantity and non-linear terms of higher order with respect 
to the phase coordinates z,y and the control u are omitted, since, subject to the condition that the right- 
hand side of the critic~d equation is multiplied by the critical variable and its expansion begins with terms 
of the second order, ~he subsequent arguments are not essentially changed and the main features of 
the problem in question are retained. 

Problem 1.1. It is required to find the optimal control u°(z, y) which stabilizes [1, 2] system (1.1) up 
to Lyapunov asymptotic stability [3] and minimizes the quality index (1.2) 

We shall assume that the following conditions are satisfied. 

Condition 1.1. The matrix R is positive-definite. 

Condition 1.2. The vectors b, A b , . . . ,  An-lb are linearly independent. 
A definition of critical cases [3, 4] of stabilization has been given in [5], the conditions for stabilizability 

in the critical case of a single zero root are indicated and methods are proposed for constructing 
stabilizing actions. 

Problem 1.1, concx:rning optimal stabilization [1, 2] in the critical case of a single zero root, is 
considered in this paper for the first time. This problem possesses a number of special features that 
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are uncharacteristic of problems involving the optimal stabilization of non-linear system [2, 6] which 
makes its solution much more difficult. A procedure for its solution is therefore proposed in the special 
case when the right-hand side of the critical equation is multiplied by a critical variable. The aim of 
the investigation was to validate an iterative procedure, which converges in the case of sufficiently small 
initial perturbations, for calculating the optimal control and the optimal Lyapunov function. In the case 
of Conditions 1.1 and 1.2, a representation of the optimal control is given in the form of a segment of 
a divergent series in powers of a critical variable and an asymptotic estimate of the accuracy of the 
approximation is indicated. 

2. O P T I M A L  S T A B I L I Z A T I O N  OF A F I R S T - O R D E R  S Y S T E M  
IN A S P E C I A L  CASE 

We consider auxiliary Problem 1.1 concerning the optimal stabilization of a first-order system when 
the equations of the perturbed motion have the form 

= OI, Z 2 + ~UZ + '~t//2 = Z(2)(Z,  U) (2.1) 

Suppose that the quality index of the control is described by the functional 

J[u] = ~ (z 2 +pzu+Xu2)dt  (2.2) 
0 

and that the following conditions are satisfied. 

Condition 2.1. As a function of the variable u, the quadratic trinomial 0bY, 2 + ~ZU -[- ,ft,/2 has different 
real roots, that is, 1~2 _ 4txy > 0. 

Condition 2.2. The integrand in (2.2) is positive-definite, that is, X - p2/4 > 0. 
In the case of (2.1), (2.2), the Hamilton-Jacobi equation for Problem 1.1 [2, pp. 484 488] has the 

form 

az2g + uOz(~g + p) + u 02 (~'g + ~,) + Z 2 = 0 (2.3) 

where dv/dt = g. 
From the necessary condition for an extremum with respect to u of the left-hand side of (2.3), we 

calculate the optimal control 

uO(z) = - ~ ( ~ g + p ) ( ~ l g  + ~L)-I z (2.4) 

Subject to Conditions 2.1 and 2.2, the solution g of Eq. (2.3) in the case of control (2.4) satisfies the inequality 

yg + ~, > 0 (2.5) 

We prove this assertion by contradiction. Initially, suppose that, for a certain y ~ 0 

yg + ~. = 0 (2.6) 

Then, the necessa~ condition for an extremum of the left-hand side of (2.3)takes the form _[~ + p = 0. Therefore, 
g = ~,~, 13 = p't~,- • In this case, the basic equation (2.3) is written in the form (txg + 1)z = 0. Consequently, 

1 ~t = yX- # 0, and Condition 2.1 is written in the form of the inequality 

(¢/X2) (p2_ 4X) > o 

which contradicts Condition 2.2. Consequently, Eq. (2.6) is impossible. 
It can be verified in a similar manner that the case when Eqs (2.3) and (2.4) have a solution which, for a certain 

y # 0, satisfies the inequality ~ + ~, < 0, is also impossible. On increasing the positive quantity ~, in such a way 
that this inequality becomes equality (2.6), we now obtain the situation for the transformed functional which has 
been investigated. Since the integrand in (2.2) remains positive-definite for any increase in the value of ~,, we arrive 
at the conclusion that this case is also impossible. This means that, when Conditions 2.1 and 2.2 are satisfied, Eqs 
(2.3) and (2.4) have a solution which satisfies inequality (2.5) for any y. 
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Hence the control u°(z) (2.4) is optimal and, in order to calculate it, it is necessary to find the magnitude 
o fg  from the equation 

~g _/1/4(~g + p)2(3'g + ~,)-I + 1 = 0 

It follows from this thatg - const. With regard to the unknown g, we obtain a quadratic equation which, 
subject to Conditions 2.1 and 2.2, has two different real roots 

(213 p - 4 t x X  - 4 3 ' )  :1: 

gl,2 = 2([~ 2 - 4¢t3') (gl > 0, g2 < 0) (2.7) 

A = (2~p - 4ou% - 43') 2 + 16(132 - 4a3')(X - p2 / 4) 

The optimal control (2.4) has the form u°(z) = qz and the quantity q takes two values 

qk = - Y2 (~gk + P)(3'g~ + X) -I, k = 1, 2 (2.8) 

According to the construction, it follows from Eq. (2.3) that 

sign ~-~ = - sign Z (2) (z, u ° (z)) 

When account is taken of the condition for the asymptotic stability of the trivial solution of the optimal 
system 

= Z(2)(z, u°(z)) (2.9) 

we arrive at the following conclusion. 

Theorem 2.1. Suppose that the equation of the perturbed motion has the form of (2.1), the transient 
quality is estimated by the functional (2.2) and Conditions 2.1 and 2.2 are satisfied. Problem 1.1 then 
has a unique solution, and the optimal control u°(z) and the optimal Lyapunov function V°(z) are defined 
by the equalities 

uO(z)=~qlz, z>~O ~gl z, z>IO 
[q2 z, z ~ O '  V°(z)=kg2 z, z<~O 

The optimal system of Eq. (2.9) has the form 

IOtl, Z~ 0 Z=I3t.Z 2, Or= 
lot  2, z~<O (2.10) 

Otk=Ot+q,~+q23', k = l ,  2 

The coefficients gl, g2, ql, q2 are calculated using formulae (2.7) and (2.8). 

3. O P T I M A l ,  S T A B I L I Z A T I O N  OF A S Y S T E M  OF A R B I T R A R Y  O R D E R  

We first consider an auxiliary problem on the optimal stability of the linear system 

~l = Ay +bu 

when the transient quality is estimated by the functional 

J[u] = i (y'Ry + u2(y))dt 
o 
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It is well known [7] that, when Conditions 1.1 and 1.2 are,satisfied, this problem has a unique solution, 
the optimal Lyapunov function is the quadratic form F°(y) = l/(2)(y) = y'Qy and the optimal control 
is the linear form u°(y) = u(1)(y) = c y, c = -Qb.  Consequently, the optimal system of the first approxi- 
mation y = (A + bc')y = Py, where P = A + bc', is asymptotically stable. 

In order to validate the procedure for calculating the solution of Problem 1.1, we find the conditions 
0 for the stabilizability of system (1.1). To do this, we calculate the solution y (z) with respect to the variable 

y of the following system of algebraic equations 

Py + bu fl)(z)+ pz=O 

We have 

y°(z) = -P-~ (by  (~)(z)+ pz) 

In accordance with Lyapunov's theory [3], we introduce the function 

Zf2°)(z, u O)(z)) = Zf2)(z, y°(z), u(l)(y°(z))+o (I)(z)) --~Z 2 +T~Zl/(I)(z) 

~ = o~ + ~b" QP-ip-  q'p-tp, rl = [~b" QP-Ib + [$- q 'Pqb 

(3.1) 

It is obvious that system (1.1) is stabilized by the equation U(1)(y) -I- 1)(1)(Z) if and only if the magnitude 
ofrl  in (3.1) is non-zero. 

The optimal Lyapunov function F°(z, y) and the optimal control u°(z, y) which solve Problem 1.1 are 
sought in the form 

V°(z, y) = IXz + y 'Qy + zd 'y  + W(z, y) (3.2) 

u ° (z, y) = u ! (y) +u O)(z) + ul (z, y) (3.3) 

Here, W(z, y) and ul(z, y) are terms of a higher order of smallness. Allowing for the fact that the optimal 
control is defined by the equality 

u ° (z, y)  = - ½ [(Ixl3 + d 'b)z  + 2b" Qy + 13zd'y + [~zW~ + b ' W ;  ] 

Wz=~W(z,y)13z, Wy=3W(z,y)l~y 
(3.4) 

we obtain the equation 

(otz 2 + zq'y)(~t + d 'y  + W z ) + (Wy)'(Ay + pz) + (Ay + pz) 'Qy + y'Q(Ay + pz) + 

+zd'(Ay+pz)+y'Ry+z2-~[( ix~+d'b)z+2b'Qy+~zd'y+[$zWz+b'Wy)]2=O (3.5) 

for calculating the function V°(z, y). 
We now select the unknowns Ix and d in such a way that the second-order terms in {z, y} vanish in Eq. 

(3.5). On taking account of the fact that, according to the construction, the matrix Q satisfy the equality 

A'Q+QA-Qbb 'Q+R=O (3.6) 

after some algebra we obtain the following equations 

d = (p-i)'(IXI~Qb - Ixq - 2Qp) 

IX2TI2 + 4ix(q'P-lp _ rlp, Qp-ib + ~p, Qp-l b _ ~b,QP-lp _ ct) - 4 + 8p 'QP-lp  + 

(3.7) 

+ 4 ( p ' Q P - l b )  2 = 0 (3.8) 

We substituteA = P + bb'Q into (3.6) and obtain the matrix equation 

P'Q+ QP+ Q b b ' Q  + R -- 0 
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We now multiply it on the left by the matrix QpqQ-1 and on the right by Q-I(p-1),Q. After some 
algebra we obtain 

-1 + 2p'Qp-lp + (p'Qp-Ib)2 = -1 - p, Qp-iQ-~ RQ-I (p-i),Qp < 0 

Consequently, Eq. (3.8) has roots which are opposite in sign. 

Theorem 3.1. Suppose that the equations of the perturbed motion have the form of (1.1), the transient 
quality is estimate by the functional (1.2), Conditions 1.1 and 1.2 are satisfied and the magnitude ofrl 
in (3.1) is non-zero. Problem 1.1 then has a unique solution in the first approximation and, moreover, 
the equation 

u{I)(z, y) =u O)(z)+ u0)(y) = - ~  [(111~ + d'b)z + 2b'Qy)] (3.9) 

stabilizes system 1.1, that is, the system 

= z2(ot - }~ 13(~t13 + d'b)) + z(q' - l~b'Q)y 

= Py + z(p- ~ (tt[~ + d'b)b) 

(3.10) 

is asymptotically stable. 
Equation (3.8) has two real roots: Ix1 > 0 and I11 < 0 to which the two values d (1) and d (2) of the 

vector d, which is de:fined by equality (3.7), respectively correspond. In system (3.10), it is necessary to 
put 

l~t~, z > 0 {d  <t), 
g = [g2, z < 0 '  d=  z > 0  d (2), z < 0 

The quantity v0x ) = Z(2°)(z, a)(1)(z))/z 2 is non-zero and is calculated using the equation 

u ~t)(z) ~ - ~ (tt[~ + d'b)z 

and, moreover, V(~l~ < O, v(~2) > 0 and 

v(l~) = ct - ~ [~(~t[~ + d'b) + (q" - ~b'Q)P (-')(p- ~ (iris + d'b)b) 

By virtue of (3.10), we denote the complete derivative with respect to time of the function W(z, y) 
by the symbol (dW/dt)(3.1o) and from (3.4)-(3.10), we obtain the equation 

l~{3.t0) ~ W z [Z 2 (Ct - J~ 13(I,t~ + d'b)) + z(q' - [$b'Q)y] + Wy[ Py + z (p -  ~ (gl3 + d'b)b)] = 

= ~ (l~zd'y + [~zW z + b'Wy)2 + z 2 (~  132~t + ~13d'b- ct)d'y + z(l~b'Qy - q 'y )d 'y  (3.11) 

for calculating the function W(z, y). 
An equation of this type arises when solving the problem of the optimal stabilization of non-linear 

systems [6] and in non-critical situations, when it is possible to prove the analyticity of the optimal 
Lyapunov function J[n a certain sufficiently small neighbourhood of the origin of the system of 
coordinates. However, in the critical case of a single zero root, which is being considered here, the specific 
feature of the optimal system of the first approximation (3.10) is such that the solution of Eq. (3.11) 
is, generally speaking, not an analytic function of the critical variable z. This is easily shown by taking 
the simplest examples where the situation is typical [8, pp. 65--67] when the function W(z, y) can be 
approximated to any specified accuracy by means of a segment of a divergent series. 

On the basis of the properties of the solutions of non-linear system (3.10), it can be shown that the 
following assertion holds. 

Theorem 3.2. Suppose that the conditions of Theorem 3.1 are satisfied. Equation (3.11) then has a 
continuous unique solution at the point z = 0 which is defined in the domains z < 0 and z > 0. With 
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an accuracy up to z" in these domains, the function W(z, y) isapproximated by a segment of the divergent 
series 

m 
W(z,y)= Z [zt(ct~ +Wk(Y))], ¢q = 0  (3.12) 

k=l 

where W,(y) are analytic functions in a sufficiently small neighbourhood of the point y = 0. In the 
domains z > 0 and z < 0, the quantities t~k and the functions Wk(y) are uniquely defined for any value 
ofk.  

In order to prove Theorem 3.2 we carry out a Lyapunov transformation and change from the 
variables 3'/to the new variables x,. in accordance with the equality x = y - y°(z). We use the notation 
W*(z, x) = W(z, y(z)) = W(z, x + y°(z)) and construct the function W*(z, x) in the form (3.12), giving 
the required quantities an asterisk. In this case, we obtain the equation 

v(~t)u, = ~k, (W~'V)'x= " ' " Wiq x + ~ ( x )  

to calculate the quantities (x~ and the functions W*k(x) when k = 1, 2 . . . . .  
It can be shown that the quantities ~k and the functions Fk(x ) are found from the results of calculations 

for smaller values ofk. Consequently, the validity of the assertions of Theorem 3.2 follows from Lyapunov's 
theorems [3, pp. 83-100] and the results of Theorem 3.1. 

4. E X A M P L E  

We will now consider a model example of a problem on the optimal stabilization of a system described by the 
equations 

~=zy, y=u+az (4.1) 

when the transient quality is described by the functional 

J[u] = ~ (u 2 + Z 2 + y 2  )dr (4.2) 
0 

Carrying out the necessary calculations, we obtain 

V 0 (Z, y) = ~z + y2 + ~Zy + W(z, y) (4.3) 

)" = 2 ( a + ~ ) ,  p. = fl:2~a2 + 1 

The upper sign corresponds to the domain z > 0 and the lower sign to the domain z < 0. 
The function W(z, y) is the solution of the equation 

In accordance with (3.13), we seek an approximation of the solution of this equation in the form 

W(z,y) = zW 1 (y)  + Z 2 ((~2 + W2 (Y)) + O(z3) 

On carrying out the necessary calculations and algebra, we obtain 

) 3!Y3+O(y4) , ~2- '~ '~  

W2(y)=_P-~+'/.___~2 y2 2W[+3"/2 y3+O(y4 ) 
8 18 

It follows from (3.4) and (4.3) that the approximation of the optimal control u°(z,y) in system (4.1) with the quality 
index (4.2) is determined by the equality 
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. ° . . .  : -  .'- b , ,  + (++ + ,, + .'-k ,,+ + o~,,' ~)+ + 
z \  \ z:  j 

+('~ l"rx'+'X'z4. _ _  y _  2$xY63y2 y2+O(y3))z2+O(z3)) 
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